
 An Industry Standard Benchmark Consortium

EEMBC Benchmark Datasheet – 2 February 2006 www.eembc.org

Networking Version 2.0 Benchmark Name:
Transmission Control

Protocol (TCP)

Highlights
 Captures most frequently used and most

processing-intensive portion of RFC793
protocol

 Simulates TCP traffic characteristics in
real networks

 De-couples processor speed from
any randomness in TCP operation

 Uses three different data sets to
simulate a variety of workloads

Application The ability of an embedded processor to handle Transmission Control
Protocol (TCP) layer processing is an important consideration for avoiding
bottlenecks in network equipment designs. Unlike ATM and some other
network protocols that are mainly processed by network processors, ASICs,
or specialized hardware blocks directly attached to general purpose
processors, the TCP layer is often processed by the CPUs in general-
purpose processors. The interest of benchmarking TCP performance on
embedded general-purpose processors has increased with the connection of
more and more embedded devices to the network. The flexibility of TCP is
such that it is used in wireline and wireless applications.

The ISO reference model is commonly used when discussing protocol
layering. This model depicts the TCP layer as sitting on top of the Internet
Protocol (IP) layer and under the application layer. The function of IP is to
provide a means of transferring TCP segments over inter-connected
networks. IP has unique addressing information for each network element,
and data communication is based on routing that provides best effort
service to TCP and other transmission control layer protocols like UDP.

In contrast to IP, TCP service is a reliable, connection-oriented byte stream
service. It typically interfaces with an unreliable network layer protocol.
Unlike other connection-oriented protocols that are based on a reliable
network layer, TCP has to implement a more complex transmission control
scheme to overcome these seemingly contradictory philosophies between
protocol layers.

The basic operation of TCP can be broken down into the following six areas:

1. Basic data transfer
2. Reliability
3. Flow control
4. Multiplexing
5. Connections
6. Precedence and security

 An Industry Standard Benchmark Consortium

EEMBC Benchmark Datasheet – 2 February 2006 www.eembc.org

Application The core of the TCP protocol is to transfer data between two connection

endpoints. Like data processing in most of the network protocols, large
data blocks are chopped into optimized sizes (as deemed by TCP) and
encapsulated in a TCP segment. Communications in TCP involve both data
and control operations. Comparing data processing with other protocols,
the biggest difference with TCP is a mandatory checksum across the entire
segment. This is because TCP provides reliable communication service on
top of an unreliable IP layer. For the same reason, TCP requires fairly
complex control and signaling to achieve reliability, efficiency, and
connection management. Compared with IP, data operations are simpler
but are more expensive in terms of performance. The cost associated with
the data block size is linear in most of the cases. (For example, computing
IP style checksum and memory copy.) The benchmark captures all the
costly data manipulations while some of the complex but rarely used
control logic can be omitted.

Benchmark
Description

This benchmark implementation captures the most frequently used and
processing-intensive portion of the protocol described in RFC793. The
benchmark measures the data and buffer management performance,
which is common and expensive in TCP implementations. Also, because
this benchmark targets embedded general-purpose processors, the
execution environment should match code size and memory scale.
Typically, execution environments include a reasonably-sized memory and
high-performance RTOS with shared kernel and user addressing spaces.
The scope of this benchmark does not include measuring overall network
performance.

EEMBC’s TCP benchmark follows these general requirement guidelines:
Accurate – the benchmark captures all major TCP operations in terms of
processing cost

Realistic – the benchmark simulates TCP traffic characteristics in real
networks

Deterministic – the benchmark de-couples processor speed from any
randomness in TCP operation

Simplistic – the benchmark implementation allows for a simplified TCP
implementation with reasonable assumptions

Application protocols that use bulk transfer contribute 90% of the traffic in
terms of number of bytes but represent only about half the packets. The
TCP benchmark is designed to be flexible enough to capture processor
performance for both transfer types.

 An Industry Standard Benchmark Consortium

EEMBC Benchmark Datasheet – 2 February 2006 www.eembc.org

Benchmark performance metrics include:

1. Complete event-driven TCP state machine, connection management
signaling

2. Transient behavior in short TCP conversations
3. Buffer management – Data manipulation in both ingress and egress

directions
4. Queue management – Send queue, unacknowledged queues in

egress direction
5. Separate re-entrant client-server task with context switching
6. Basic flow control
7. Multiple data stream (phase II)
8. Configurable packet size distribution for different traffic patterns

RFC793 requirements that are not included in benchmark include:

1. Real-time timer related – RTT estimation and update, RTO
2. Exception handling, out-of-order delivery, duplicates and lost

packets

TCP behavior varies dramatically between different applications. Packet
sizes, conversation length, and queue depth can all affect processing in
different ways. To cope with different scenarios, the benchmark is
configurable. In addition, the following four standard test cases were
designed based on representative statistical data.

Parameters/Tests
The application data block processed between the client and server is
constructed as a ring or circular buffer based on the segment size, and
number of packets in the workload.

1. Bulk data transfer test uses maximum TCP segment size (which is
typically used in FTP data channel)

2. Jumbo test uses MTU sizes, and numbers of packets applicable to a
Gigabit Ethernet Backbone.

3. Mixed packet sizes is an average case Standard Ethernet – mixture
of activity

Analysis of
Computing
Resources

Each workload simulates network traffic using the following steps:
1. Initiate server task.
2. Insert network channel effect
3. Initiate client task
4. Insert network channel operations of client.

This workload is repeated until all client connections are closed.

