
 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org

OABench™ Version 2.0 Benchmark Name: Text (Text
Parsing)

Highlights
▪ Benchmarks potential performance of a

printer interpretive control language
▪ Parses Boolean expressions made up

of text strings
▪ Tests bit manipulation, comparison,

and indirect reference capabilities.

▪ Largely shift/rotates with integer math
and logical compares/branches

▪ A component of the EEMBC OAV2mark™
▪ Three data files
▪ Implements cyclical redundancy

checksum (CRC) for self-checking

History,
Application
and
Restrictions

The Text (Text Parsing) Benchmark is representative of a printer application
where an interpretive control language like PCL or PostScript is parsed. The
algorithm parses Boolean expressions represented as text lines made up of
variables, constants, and operators. The variables are space separated
words, from 1 to 64 characters long, the constants are single character “T” or
“F” and the operators may either be single-character symbols (& | !) or their
phonetic equivalents (and, or, not). Standard precedence rules for
expression parsing apply.

Benchmark
Description

Input to the benchmark consists of rule data files that are loaded via the
EEMBC RAMfile system. OABench Version 2 has four dataset files, one of
which is used for profiling, compared with just one for OABench Version 1.1.
These files are found in the libtxt directory. Much of the code is generated by
the cheader subsystem in Version 2. The strings consist of variables,
constants, and operators separated by spaces. For example:

"sss and fred implies (red & blue) or fred"

The expression is broken down into a binary tree structure, with each branch
on the tree being an operand (a single variable, or a constant, or a reference
to yet another tree node representing another expression). Unary operators
are stored as modifiers to each of the branches. The resulting structure is
then traversed to evaluate the value of the expression.

The benchmark avoids calling a memory allocation routine by statically
declaring and managing a 1,000-node buffer. After the timed iterations have
been completed, the test is run one additional time and a CRC is calculated
for the binary tree to be used for checking for correct operation.

For each line, the benchmark breaks the expression into a binary tree
structure, where each node contains a binary expression with two operands
(each with a possible unary operator) and a binary operator. The operands
may be variables, constants, or pointers to further nodes which themselves

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org

represent binary operations, etc.

A debug mode is provided (in this case, the #define BENCHMARK) to activate
the main timed loop, controlled by the test harness. If this is not defined,
then the program goes into an interactive mode where each "rule" (Boolean
expression) is entered by the user, parsed, and then printed out as a truth
table

If the program is in debug mode (i.e., not in benchmark mode), then the
program evaluates the expression for all possible values of the variable list.
This is done with a recursive function to set the variables, and then by
evaluating the expression stored in the binary tree.

1,000 iterations are the default, and 1,000 for CRC verification runs.

Analysis of
Computing
Resources

This benchmark exercises the byte manipulation, pointer comparison, indirect
reference handling and stack manipulation capabilities of a processor.

ALU, 39.97%

Loads, 28.04%

Stores, 10.37%

Branch, 21.62%

Multiply/Divide, 0.00%

The instruction mix is shown in the pie chart. The percentages may vary
across architectures. The C library functions strcmp () and strncpy() are used
extensively by this benchmark, and a well-designed and optimized C library
would improve performance. Unlike other EEMBC benchmarks, dynamic
memory allocations via malloc() are avoided. No floating-point calculations
are used. The code size and the data size are moderate.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org

Optimizations
Allowed

Out of the Box / Standard C
Full Fury / Optimized

• The C code must not be changed for Out-of-the-Box unless it must be
modified to get it to compile. All changes must be documented,
authorized by the certification authority, and must not have a
performance impact.

• For Out-of-the-Box, additional hardware can be used if it does not
require code changes.

• All optimized libraries must be part of the standard compiler package,
and/or available to all customers

• The EEMBC Test Harness Lite must be used. Test harness changes
may be made for portability reasons if they do not impact
performance.

• For Optimized, the basic algorithm may not be changed, but the code
may be rewritten in assembler. Re-writing the code to take
advantage of parallelism is allowed so long as the correct answers are
achieved using any arbitrary keys (not just those supplied in the
benchmark code).

• For Optimized, optimized libraries can be used if they are publicly
available.

• For Optimized, in lining is allowed.
• Additional data files may be used during certification to ensure the

correctness of the optimized benchmark. You should not assume
data patterns during optimization.

• Profile directed optimization is allowed using training data set 1,
ruledata1.txt.

