
 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org

OABench™ Version 2.0 Benchmark Name: Rotate
(Image Rotation)

Highlights

 Benchmarks potential performance of a
printer application

 Uses a bitmap rotation algorithm to
perform a clockwise 90° rotation on a
binary image

 Largely integer math with shifts and
logical compares

 Tests bit manipulation, comparison,
and indirect reference capabilities

 Largely logical compares/branches and
integer addition/subtraction

 A component of the EEMBC OAV2mark™
 11 dataset files
 Implements cyclical redundancy
checksum (CRC) for self-checking as
well as the ability to view resultant
processed output files (new in
Version 2)

History,
Application
and
Restrictions

The Rotate (Image Rotation) benchmark is representative of monochrome
printer applications that must rotate binary images 90° (for example, to
switch between portrait and landscape modes). This benchmark uses a
bitmap rotation algorithm to perform a clockwise 90° rotation on a binary
image. Rotated images are assumed to be a complete image (i.e. not rotating
a bitmap within a larger image), with rows padded out to byte boundaries.

Benchmark
Description

The bitmap rotation algorithm is primarily aimed at testing the bit
manipulation, comparison, and indirect reference capabilities of the
microprocessor. The algorithm uses a series of indirect references and bit
masks to check and set individual bits in a data buffer representing a binary
image. The implementation supports 8-, 16- and 32-bit data as well as little
and big endian memory architectures. Two buffers are used, one for input
and one for output, rather than trying to rotate the image in place.

There are multiple input data buffers available to debug the benchmark. The
input buffer is included in the benchmark is statically initialized data and the
output buffer is created by calling the test harness memory allocation
routine, th_malloc(). After the timed iterations have been completed, the test
is run one additional time so that the results can be checked by calculating a
CRC of the output buffer. The benchmark assumes 1 bit per pixel.

The C library routine memset() is called at the beginning of each iteration to
set the output buffer to zeroes.

In OABench Version 2, datasets are taken from external data files (the same
.pgm files as found in DENbench Version 1.0), and data is output to files as
well to aid in verification. The input data files are:

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org

Data
Name

Data File Attributes Picture

Data
1

DavidAndDogs 564x230, 256 shades
of gray. The image
has 215 unique colors.

Data
2

DragonFly 606x896, 16 million
colors. The image has
162,331 unique
colors.

Data
3

EEMBCGroupS
hot-Miami

EEMBCGroupShotMia
mi: 640x480, 16
million colors. The
image has 181,872
unique colors. Large
number of fleshtones,
highest number of
unique colors in data
set.

Data
4

Galileo 290x415, 16 million
colors. The image has
36,557 unique colors,
and also contains "real
black" for over 30% of
the picture, which is
interesting from an
optimization
perspective.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org

Data
5

Goose 320x240, 256 colors.
The image has 22921
unique colors.

Data
6

Mandrake 320x240, 16 million
colors. The image has
71,482 unique colors.

Data
7

MarsFormerLa
kes

800x482, 16 million
colors. The image has
91,152 unique colors.

Data
8

Rose256 227x149, 256 colors.
The image contains
256 unique colors.

Data
9

Dragon 370 x 384, 256 colors,
88 unique colors.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org

Data
10

Gradient A grayscale gradient
shading test pattern.
256 x 256, 256 colors.

Data
11

Medium A long, thin, black and
white picture having
37 x 345 pixels, 256
colors, and 255
unique colors.

50 iterations are the default, 2 for CRC verification runs.

Analysis of
Computing
Resources

The benchmark effectively stresses the bit manipulation capabilities of the
target CPU.
Dynamic Instruction Mix:

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org

ALU, 0.470817066

Loads, 0.202954569

Stores, 0.037214106

Branch, 0.28606363

Multiply/Divide,
0.002950629

The percentages are approximate and may vary across architectures. The C
library function memset() is called once per iteration to initialize the output
buffer to zeroes. No floating-point calculations are used. The code size is
small and the data size is moderate. Efficient multiplication and division as
well as bit-shifting. By using multiple data sets (and proprietary EEMBC
Technology Center data for certification), data-focused optimization is
eliminated.

Optimizations
Allowed

Out of the Box / Standard C
Full Fury / Optimized

• The C code must not be changed for Out-of-the-Box unless it must be
modified to get it to compile. All changes must be documented,
authorized by the certification authority, and must not have a
performance impact.

• For Out-of-the-Box, additional hardware can be used if it does not
require code changes.

• All optimized libraries must be part of the standard compiler package,
and/or available to all customers.

• UNROLL may be selected using a #define to fully unroll the inner loop
for Out-of-the-Box certification.

• Bits must be defined to 32 for Out-of-the-Box certification.
• Test harness changes may be made for portability reasons if they do

not impact performance.
• For Optimized, the basic algorithm may not be changed, but the code

may be rewritten in assembler. Rewriting the code to take advantage
of parallelism is allowed so long as the correct answers are achieved
using any arbitrary keys (not just those supplied in the benchmark
code).

• For Optimized, the source code may be changed to take advantage of

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org

additional hardware.
• For Optimized, optimized libraries can be used if they are publicly

available.
• For Optimized, in lining is allowed.
• Additional data files may be used during certification to ensure the

correctness of the optimized benchmark. You should not assume data
patterns during optimization.

• Profile directed optimization is allowed using training data set 1,
DavidAndDogs.pgm.

