
 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org

OABench™ Version 2.0 Benchmark Name: Bezier

Highlights
 Benchmarks the classic Bezier curve

algorithm
 Interpolate a set of points defined by

the four points of a Bezier curve (two
end points, two intermediate points)

 Fixed point and floating point versions
available

 A component of the EEMBC
OAV2mark™

 Four new data files implemented in
Version 2

 Bezier curves are the backbone of
computer graphics, font renderings
and design, and computer graphics.

 Implements Cyclical Redundancy
Checksum (CRC) for self-checking in
integer mode, and SNR for self
checking in floating point mode.

History,
Application,
and
Restrictions

Pierre Étienne Bézier, a French engineer, created a mathematical numerical
analysis technique for drawing parametric curves. The problem solved was
how to draw curves based on fixed data points. The creator of the first
algorithm to implement Bezier curves was Paul de Casteljau.

Bezier curves can be linear, quadratic, cubic, or even triangles. In computer
science, one of the primary applications of Bezier curves is the creation and
smoothing of fonts on-screen and in a printer for the printed page. For
example, TrueType® fonts use Bezier curves. TrueType, PostScript®,
Ghostscript, The GIMP, and many other applications use Bezier splines with
cubic Bezier curves for drawing shapes. Translation, scaling, and rotation on
the curve can be accomplished by applying the respective transform on the
control points of the curve (the points).

As with all EEMBC source code, the Bezier benchmark is not to be used in
any commercial product whatsoever.

Benchmark
Description

In EEMBC’s OABench office automation benchmark suite, the calculations
interpolate a set of points defined by the four points of a Bezier curve. Two
endpoints and two control points define the curve. The points are in 2D
space, and are defined using floating point (double precision) or integer
variables. The algorithm makes use of configuration constants in the header
file bez.h. This includes the number of points to interpolate for each curve
as well as the overall loop count. The main function makes use of a call to
the test harness malloc() to create an array of curve structures for all the
input data before processing starts. The first line in the input file defines the
number of points following in the rest of the file.

This benchmark evaluates the parametric function for Bezier curve

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org

Benchmark
Description
(continued)

 P(t) = p0*(1-t)^3 + 3*p1*t*(1-t)^2 + 3*p2*(t^2)*(1-t) + p3*t^3

1000 iterations is the default, 10 for CRC verification runs. There are four
data sets, one of which is reserved for profiling initialization.

Analysis of
Computing
Resources

The benchmark uses division, multiplication, and scalar processing. There
are two loops (inner and outer), so efficient compilers and architectures can
take advantage of this, but the function interpolatePoints() cannot be
optimized away. This benchmark is almost exclusively CPU bound, and the
quality of the math library has an effect on performance.

Optimizations
Allowed

Out-of-the-Box / Standard C
Full Fury / Optimized

 The C code must not be changed for Out-of-the-Box unless it must be
modified to get it to compile. All changes must be documented,
authorized by the certification authority, and must not have a
performance impact.

 For Out-of-the-Box, additional hardware can be used if it does not
require code changes.

 All Optimized libraries must be part of the standard compiler
package, and/or available to all customers.

 Test harness changes may be made for portability reasons if they do
not impact performance.

 For Optimized, the basic algorithm may not be changed, but the code
may be rewritten in assembler. Re-writing the code to take
advantage of parallelism is allowed so long as the correct answers are
achieved using any arbitrary keys (not just those supplied in the
benchmark code). You may not optimize out the function
interpolatePoints().

 For Optimized, optimized libraries can be used if they are publicly
available.

 For floating point, SNR is used to evaluate the quality of the output.
Double precision is required to achieve certifiable SNR.

 For Optimized, in lining is allowed.
 Additional data files may be used during certification to ensure the

correctness of the optimized benchmark. You should not assume
data patterns during optimization.

 Profile directed optimization is allowed using training data set 1,
bezdata1.txt.

