
 An Industry Standard Benchmark Consortium

EEMBC Benchmark Datasheet – 2 February 2006 www.eembc.org

DENBench™ Version 1.0 Benchmark Name: RSA

Highlights
 Benchmarks the Rivest, Shamir, and

Adleman (RSA) cryptography algorithm
 Created in part from SSLEAY (the

open-source Netscape Secure Socket
Layer source code base courtesy of Eric
Young)

 Roundtrip implementation and self-
checking assures accuracy

 A component of the DENBench
cryptography sub-suite

 Computationally intensive and
accurate implementation of RSA
algorithm modified to PKCS standards

 Uses Optimal Asymmetric Encryption
Padding (OAEP)

Applications
and
Restrictions

The RSA algorithm was first described in 1977 by Ron Rivest, Adi Shamir,
and Len Adleman at MIT. The letters RSA are the initials of their surnames.
According to Wikipedia, RSA was one of the first “strong encryption” public
key cryptography schemes. It can be used for both digital signatures and
encryption. The RSA cipher is used in numerous cryptographic protocols,
including Transport Layer Security (TLS), Secure Socket Layer, (SSL),
Secure Shell (SSH), and Internet Protocol Security (IPSEC).

RSA is much slower and therefore more computationally intensive than DES,
and unlike DES is not symmetrical. Thus, there are different keys for
encryption and decryption.

Although it has been proven to be vulnerable to certain attacks (including
timing, man-in-the-middle, and adaptive chosen cipher attacks), it is an
extremely popular algorithm used in many e-commerce (internet) and m-
commerce (mobile) applications. Some people choose to implement DES,
Triple-DES, or AES for stronger encryption. The major concern is really the
“shared secret key” nature of the asymmetric system. Because RSA is part
of the Secure Socket Layer system used so widely on the internet, and
because it can be hacked by determined foes, it is now often paired with
Optimal Asymmetric Encryption Padding (hence the term RSA-OAEP), and in
fact EEMBC has implemented the benchmark as an RSA-OAEP system. In the
benchmark, RSA-OAEP are used together with the Public Key Cryptography
Standards (PKCS). The EEMBC code is based on PKCS 1.5 and OAEP 2.0R1
and implements Shoup’s improvements to OAEP (in other words, EME-
OAEP).

The EEMBC RSA benchmark is a cipher algorithm that provides an indication
of the potential performance of a microprocessor or digital signal processor
subsystem doing RSA cryptographic encryptions and decryptions.

This benchmark, and the source code, is subject to the following restrictions:

 An Industry Standard Benchmark Consortium

EEMBC Benchmark Datasheet – 2 February 2006 www.eembc.org

Applications
and
Restrictions

This software is subject to the following Export Restrictions (exportation
from the United States of America to non-USA countries): Implementations
of cryptography are subject to United States Federal Government export
controls. Export controls on commercial encryption products are
administered by the Bureau of Export Administration (BXA)
http://www.bxa.doc.gov/Encryption/ in the U.S. Department of Commerce.
Regulations governing exports of encryption are found in the Export
Administration Regulations (EAR), 15 C.F.R. Parts 730-774. Compliance with
export restrictions is the responsibility of each individual EEMBC member,
not EEMBC.

Benchmark
Description

The EEMBC RSA benchmark handling of private key operations does not
depend on the private key components being present (for example, a key
stored in external hardware). The recommended number of iterations is 30,
and it takes about a second to run on a desktop x86 PC at about 1.7 GHz.
Checking is by Cyclical Redundancy Checksum (CRC).

Analysis of
Computing
Resources

The benchmark is computationally challenging: addition, multiplication,
extensive use of division, bit shifting, matrix math, bitwise operators such as
XOR, and other operators are used. It is implemented in integer math. This
benchmark is almost exclusively CPU bound, and the quality of the math
library as well as memory library has an effect on performance. Memory
moves are performed repeatedly, so optimized C library mem* functions
would improve performance. Use of malloc() and heap is extensive, so
optimizing memory management will yield better results. Sophisticated
superscalar architectures scheduled by sophisticated compilers (or assembly
language implementations) can take advantage of some parallelism.
Architectures that require aligning for good performance but that do not
automatically pad to obtain alignment will suffer. Odd C syntax with
numerous breaks and jumps means this benchmark is unlikely to be
optimized away by compiler trickery, although good standard optimization
techniques (including loop unrolling and hoisting loads) would improve
performance. A tool chain must implement a fair fraction of the standard C
library, including rand() functionality.

