
 An Industry Standard Benchmark Consortium

EEMBC Benchmark Datasheet – 2 February 2006 www.eembc.org

Networking Version 2.0 Benchmark Name: QoS

Highlights

 Based on NetBSD kernel code

Application This benchmark simulates the processing undertaken by bandwidth
management software used to “shape” traffic flows to meet Quality of Service
(QoS) requirements. The system paces the delivery of the packets to the
desired speed, based on a set of predefined rules. This shaping is achieved via
the use of a variant of the Weighted Fair Queuing (WFQ) algorithm. Random
Early Detection (RED) queue management is also supported to provide flow
control.

Benchmark
Description

The overall structure for the QoS system is as follows (largely based on
documentation provided with the Dummynet QoS system):

In the QoS system, egress packets are selected based on rules established
during the initialization phase, and passed to two different objects: “pipe” or
“queue.”

A queue is just a queue with configurable size and queue management policy.
It is also associated with a mask (to discriminate among different flows), a
weight (used to give different shares of the bandwidth to different flows) and a
pipe, which essentially supplies the transmit clock for all queues associated
with that pipe.

A pipe emulates a fixed-bandwidth link, whose bandwidth is configurable. The
"clock" for a pipe is incremented every iteration in the benchmark. A pipe is
also associated with one (or more, if masks are used) queue, where all packets
for that pipe are stored.

The bandwidth available on the pipe is shared by the queues associated with
that pipe (only one in case the packet is sent to a pipe) according to the
WF2Q+ scheduling algorithm and the configured weights.

Egress packets are stored in the appropriate queue, which is then placed into
one of a few heaps managed by a scheduler to decide when the packet should
be extracted. The scheduler is run once per iteration, and grabs queues from
the head of the heaps when they are ready for processing.

There are three data structures defining a pipe and associated queues:
1. dn_pipe, which contains the main configuration parameters related to

bandwidth
2. dn_flow_set, which contains WF2Q+ configuration information
3. dn_flow_queue, which is the per-flow queue (containing the packets)

Multiple dn_flow_set can be linked to the same pipe, and multiple
dn_flow_queue can be linked to the same dn_flow_set. All data structures are
linked in a linear list which is used for housekeeping purposes.

 An Industry Standard Benchmark Consortium

EEMBC Benchmark Datasheet – 2 February 2006 www.eembc.org

Benchmark
Description
(continued)

During configuration, the dn_flow_set and dn_pipe structures (a dn_pipe also
contains a dn_flow_set) are created and initialized.

At runtime, packets are sent to the appropriate dn_flow_set (either WFQ
ones, or the one embedded in the dn_pipe for fixed-rate flows), which in turn
dispatches them to the appropriate dn_flow_queue (created dynamically
according to the masks).

The transmit clock for fixed rate flows (ready_event()) selects the
dn_flow_queue to be used to transmit the next packet. For WF2Q,
wfq_ready_event() extracts a pipe which in turn selects the right flow using a
number of heaps defined into the pipe itself.

The current dataset sends packets directly to a pipe and utilizes fixed rate
flows.

Analysis of
Computing
Resources

QoS is a memory intensive benchmark – large memory requirements test data
cache misses, while long sequences of dependent loads test memory latency.

