

An Industry Standard Benchmark Consortium

## **Networking Version 2.0**

Benchmark Name: OSPF Version 2

| Highlights                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Benchmarks Potential Performance<br/>of Routers</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Application                                                         | The OSPF (Open Shortest Path First)/Dijkstra benchmark implements the Dijkstra shortest path first algorithm, which is widely used in routers and other networking equipment.                                                                                                                                                                                                                                                                                                                         |
| Benchmark<br>Description                                            | The Dijkstra algorithm finds the shortest, or least cost path, from a specific router (called the source) to all other routers that the source knows about. It builds a table of nodes where each node is a router. Each node has one or more "arcs" where each arc is a directed (one way) link to another node. These arcs represent links between routers. Each arc has a cost value that represents the 'value' of the link. The lower the cost number, the more desirable it is to use the link. |
|                                                                     | The Dijkstra algorithm starts at a source (or root) node. It then computes the best-case cost, or shortest route of all the other nodes in the network in relation to the source node.                                                                                                                                                                                                                                                                                                                |
|                                                                     | There are two tables, arc_base and node_base. Each table is initialized before the benchmark starts and then reinitialized after each iteration of the benchmark, so that each iteration does exactly the same thing.                                                                                                                                                                                                                                                                                 |
|                                                                     | Instead of building a predefined route, the standard method in this benchmark builds the routing tables dynamically.                                                                                                                                                                                                                                                                                                                                                                                  |
| Analysis of<br>Computing<br>Resources                               | The benchmark repeatedly walks the list that is used to hold the nodes.<br>Consequently, a processor's load-use latency and its ability to handle<br>frequent CTI (control transfer instructions) operations are an important<br>factor in this benchmark.                                                                                                                                                                                                                                            |
| Special<br>Notes                                                    | 1. Do not directly compare Version 2.0 results to results of Version 1.The dataset in Version 2.0 has been significantly changed from the Version 1 implementation to improve the quality and real-world nature of this benchmark.                                                                                                                                                                                                                                                                    |