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Characterization of the EEMBC Benchmark Suite 
 

By Jason Poovey, North Carolina State University 
 
 
EEMBC addresses the needs of embedded designers by providing a diverse suite of processor 
benchmarks organized into categories that span numerous real-world applications. Research 
done at North Carolina State University investigates the benchmark suites through the use of 
benchmark characterization to create a description of each workload.  
 
Benchmark characterization involves re-describing a workload as a set of quantifiable abstract 
attributes. Designers can then use these measured attributes to determine program similarity. 
By combining these characteristics with their knowledge of the actual application, designers can 
select the most relevant benchmarks from the EEMBC suite to test the potential in situ 
performance of an embedded processor. 
 
We used a mixture of design characteristics including instructions/clock (IPC), branch mis-
prediction ratios, and dynamic instruction percentages. We also collected hardware design 
metrics for caches and functional units that target the hardware requirements to achieve 
certain performance goals. 
 
 
 
Methodology 

 
This study collected characteristics for the MIPS, PowerPC, x86, and PISA (used in 
Simplescalar) architectures. The resulting combination of metrics provides an accurate 
representation of the workload’s activity. Thus, designers can find which workloads are similar 
to their own and then leverage the most relevant benchmarks as a proxy for architecture 
design. The characteristics assist in this process by indicating the minimum hardware needed to 
achieve a target level of performance. 
 
We relied primarily on trace-driven simulation to characterize the processors listed above. We 
used trace-driven simulation to collect data for cache design experiments as well as to reveal 
the distribution of dynamic instructions. 
 

Architecture Independent Architecture Dependent 
 Cache Design for target miss ratios 

 1% and 0.1% Target Miss Ratios 
 Block sizes ranging from 24 to 27 
 Set Associativities: Direct Mapped,  

2-way, 4-way, and fully associative 
 Functional Unit Requirements Distribution 

 Target 85% Utilization 
 ALU, MULTDIV, LSU, BRANCH, SHIFT 

 Dynamic Instruction Mixes 

 Instructions per Cycle 
 Branch Mis-prediction Ratios 

 Bimodal Predictor 
 

Table 1 – Measured Benchmark Characteristics 
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Cache Design 

 
Block size, set associativity, and total size are the defining characteristics of caches. 

Cache performance may vary significantly if any of these variables are changed. Therefore, it is 
often very costly to perform an entire design space search because each cache configuration of 
interest requires additional simulation. We used a single-pass simulator to allow for the 
simultaneous evaluation of caches within a specified range of these three variables. Rather than 
picking particular cache configurations, this tool isolates cache configurations that meet user-
specified performance goals. The single-pass simulator characterizes workloads in terms of 
hardware requirements, rather than simply measuring the performance of a particular cache 
realization. We chose miss ratios of 1% and 0.1% as target performance goals to demonstrate 
the suggested cache sizes that would achieve the desired performance for L1 and L2 caches, 
respectively. If cold misses cause a cache configuration to have a higher miss rate than the 
user specified target, then the intrinsic miss ratio is targeted 

 
 
Functional Unit Distribution 

 
When designing a new system, designers must decide the number of functional units 

(such as load/store units and multiply/divide units) that should be included in their design. 
Rather than iteratively modifying the number of functional unit types and re-simulating, the 
distribution measurements indicate the number of functional units needed for each type. The 
functional unit distribution simulates an idealized out-of-order machine with an infinite width 
and a perfect branch predictor. True dependencies between instructions thus become the only 
bottleneck. We then collected data to determine the number of functional units requested at 
any given time. In this study, the distribution results represent the number and type of 
functional units necessary to meet workload demands for 85% of the execution time. The 
functional units simulated were ALUs, load/store units, multiply/divide units, branch units, and 
shift units. 

 
 

Experimental Analysis 
 

The functional unit distributions show the hardware needed to achieve maximum 
parallelism on an idealized machine. To graphically represent the metrics of our simulations, we 
used Kiviat graphs, which visualize multivariable data in a way that easily reveals program 
behavior. As Figure 1 demonstrates, the results vary greatly between the benchmark suites. 
This is significant for two reasons: it points out the application-specific nature of each 
benchmark suite, and it shows that more than one suite must be run to comprehend the 
capabilities of the processing platform. 
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Figure 1 – Using Kiviat Graphs to Represent Functional Unit Distribution 
(85% Utilization) 

 
 
 
EEMBC’s Networking 2.0 suite has larger functional unit requirements than Networking 1.1, 
indicating that greater parallelism is available in the latest version. TheAutoBench 1.1 
automotive/industrial suite exhibits similar strains on functional units as Networking 2.0, with 
the difference being that Networking 2.0 has slightly higher requirements for branch 
instructions. In general, Networking had the largest percentage of branch instructions, and thus 
required the largest number of corresponding functional units. Higher numbers of load/store 
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functional units are beneficial in all suites except for TeleBench 1.1. This is the case not 
because of a lack of memory instructions, but because as the instructions distribution indicates, 
TeleBench 1.1 contains an average percentage of memory instructions for all benchmarks. 
These memory instructions do not exhibit high parallelism, and thus do not benefit from 
additional load/store functional units. 
 
In our analysis, we determined that the DENBench 1.0 digital entertainment benchmarks place 
the most demand on shift functional unit requirements, where four execution units are needed 
to optimize performance. On the other hand, the OABench 1.1 office automation suite exhibits a 
unique behavior, where only the ALU and LSU units are stressed. 
 
 
Benchmark-Specific Analysis 
  
The analysis above shows that there is workload variety between the different benchmark 
suites. Further analysis shows that there is also significant variety internal to the particular 
workload categories. For example, within AutoBench 1.0, aifft had very large cache 
requirements, whereas iirflt did not. Pntrch showed a high percentage of memory accesses, but 
did not require a significant cache size to obtain the desired performance goals.  
 
Branch predictor accuracy is high for most benchmarks. However, some workloads, such as 
aifftr and aiifft, show spikes in the mis-prediction rates. However, this is similar to many 
embedded environments, where code is optimized for the absence of a branch predictor, which 
is omitted to save space or power. 
 
Similar workloads have similar shapes in the Kiviat graphs. Figure 2 shows a collection of Kiviat 
graphs grouped based on workload similarity. In this figure, nine clusters were determined via 
visual inspection. 
 
No single suite exhibits homogeneous characteristics. Even the ConsumerBench 1.1 digital 
imaging suite, which targets the most specific applications, spans two classification categories. 
The most heterogeneous is AutoBench 1.1, which covers four of nine Kiviat classifications. 
OABench 1.1 is interesting in that it contains only three benchmarks, each of which were 
classified into different categories. Also of note is that workloads from differing suites exhibit 
similar characteristics. For example, canrdr is very similar to many networking applications. 
This means that workload activity is similar even between different suites, with only minor 
differences in the magnitude of the specific metrics. 
 
In the Networking suites, the pktflow and pktcheck benchmarks are implemented using four 
different packet sizes. As the size of the packets increase, the cache activity also slowly 
increases. Within the networking suites, there are differences between the Networking 1.0 and 
Networking 2.0 ospf benchmarks. The Networking 2.0 version has greater ALU activity. Finally, 
the rgbcmy and rgbyiq benchmarks require much larger caches to achieve a 0.1% miss ratio 
versus a 1% miss ratio, showing that these benchmarks have many conflict misses that require 
a larger cache size to remove. 
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Figure 2 - Kiviat Plots of Combined Characteristics 
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Conclusion 
 
This experiment shows the diversity of the EEMBC benchmark suite as well as providing insight 
into the specifics of each workload’s activity. By using a set of hardware design and 
performance metrics, the results display an accurate representation of the workload’s inherent 
behavior. As expected, we found diversity within and between the suites. This diversity ensures 
that designers can use combinations of EEMBC workloads to represent most real-world 
workloads and use this characterization data as a starting point to make effective design 
choices. 

 


