

AutoBenchTM Version 1.1

Benchmark Name: Infinite Impulse Response (IIR) Filter

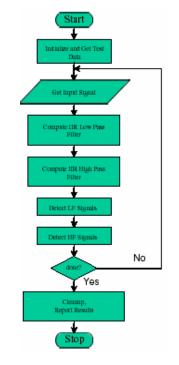
Benchmark
DescriptionThis Embedded Microprocessor Benchmark Consortium (EEMBC) benchmark algorithm
simulates an embedded automotive/industrial application where the CPU performs an Infinite
Impulse Response (IIR) filtering sample on 16-bit or 32-bit fixed-point values. It implements a
Direct-Form II N-cascaded, second-order IIR filter. IIR filters can often be more efficient that FIR
filters, in terms of attaining better magnitude response with a given filter order. This is because
IIR filters incorporate feedback and are capable of realizing both poles and zeros of a system,
whereas FIR filters are not capable of realizing the zeros. The difference equation for a Direct
Form II N-Cascaded Direct second-order IIR filter is:

 $\{u(n) = x(n) + a(1)^*x(n-1) + a(2)^*x(n-2), \\ \{y(n) = b(0)^*u(n) + b(1)^*u(n-1) + b(2)^*u(n-2); \\ \}$

where:

x(n) = input signal of the biquad at time nu(n) = state variable of the biquad at time ny(n) = output signal of the biquad at time n a(n),b(n) = coefficients of the biquad

High- and low-pass IIR filters process the input signal data. Binary comparators also digitize the outputs of the filters. This IIR filter benchmark explores a CPU's ability to perform multiply-accumulates and rounding. It employs typical DSP functions that would replace an analog signal chain comprised of op-amps and comparators.


Optimization	Category	Allowed	Disallowed
Rules	ANSI C	X	
	Intrinsics/Language Extensions	X	
	Custom Libraries	X	
	Assembly Language	X	
	HW Accelerators	X	

Algorithm Flowchart (page 2)

An Industry-Standard Benchmark Consortium

Algorithm Flowchart

